Expressing Geometric Properties Worksheet 1

1. Prove that the shape with corners $A(4,7), B(8,5)$ and $C(10,10)$ is a scalene triangle.
$A B=2 \sqrt{5}, B C=\sqrt{29}, A C=3 \sqrt{5}$.
2. Prove that the shape with corners $A(1,4), B(3,0), C(1,-4)$ and $D(-1,0)$ is a rhombus.

$$
A B=B C=C D=D A=2 \sqrt{5}
$$

3. Prove that the shape with corners $A(10,8), B(12,7), C(9,6)$ and $D(11,5)$ is a rectangle.

$$
\begin{aligned}
& m_{1}=\text { Slope }_{A B}=\text { Slope }_{C D}=-0.5, \\
& m_{2}=\text { Slope }_{B D}=\text { Slope }_{A C}=2 \text { and } \\
& m_{1} m_{2}=-1
\end{aligned}
$$

4. Prove that the shape with corners $A(10,8), B(13,5,5)$ and $C(17,12)$ is an isosceles triangle.
$A C=B C=\sqrt{67}$ and $A B=3 \sqrt{2}$.
5. Prove that the shape with corners $A(-6,4), \quad B(-3,-1), \quad C(0,-2) \quad$ and $D(-6,-8)$ is a trapezoid.
The opposite sides $A B$ and $C D$ are parallel, Slope $_{B P}=$ Slope $_{C D}=1$ whereas sides $B C$ and $A D$ are not parallel.
6. Prove that the shape with corners $A(14,11), \quad B(24,9), \quad C(26,3) \quad$ and $D(16,5)$ is a parallelogram.

Midpoint of the diagonal $A C=$ Midpoint of the diagonal $B D=(15,7)$, therefore tha diagonals bisect each other.
7. Prove that the shape with corners $A(8,9), B(13,10), C(14,5)$ and $D(9,4)$ is a square.
$m_{1}=$ Slope $_{A B}=\operatorname{Slope}_{C D}=0.2$, $m_{2}=$ Slope $_{B C}=$ Slope $_{D A}=-5$ and $m_{1} m_{2}=-1$, therefore adjacent sides are perpendicular. The sides are equal $A B=B C=C D=D A=\sqrt{26}$.
8. Prove that the point $(4,11)$ lies in the line $y=0.5 x+9$.
Plugging $x=4$ in the equation $0.5(4)+$ $9=11$.
9. Prove that the point $(6,8)$ lies on the circle with a center of $(3,4)$ and a radius 5.
Plugging $x=6$ and $y=8$ in the equation of the circle is $(x-3)^{2}+(y-4)^{2}=$ $(5)^{2},(6-3)^{2}+(8-4)^{2}=3^{2}+4^{2}=25$.
10. Prove that the point $(6,8)$ lies on the ellipse $\frac{(x-1)^{2}}{9}+\frac{(y-2)^{2}}{16}=1$..
Since the simplified statement of $1=1$ is true, we know that $(1,6)$ is a set of coordinates that satisfies the equation, and therefore lies on the ellipse.

