Structure in Expressions - Worksheet 3 Answer Key

Identify the sequence as arithmetic, geometric, or neither:

1. $0,1,1,2,3,5,6,13, \ldots$.

The answer is neither. There is no common difference or common ratio.
2. $-16,-13,-10,-7,-4,-1,2, \ldots$.

The answer is arithmetic. Each term is three more than the preceding term, so the common difference is 3 .
3. $-10,-20,-40,-80,-160,-320, \ldots$.

The answer is geometric. Each number is two times the previous number, so the common ratio is 2 .
4. $1,0.1,0.01,0.001,0.0001, \ldots$.

The answer is neither. Each term, starting with the third term, is the sum of the previous two terms.
5. $\frac{a^{2}}{b^{5}}, \frac{a}{b^{4}}, \frac{1}{b^{3}}, \frac{1}{a b^{2}}, \frac{1}{a^{2} b}, \frac{1}{a^{3}}, \frac{b}{a^{4}}, \frac{b^{2}}{a^{5}}, \ldots$.

The answer is geometric. Each term is
the previous term multiplied by $\frac{a}{b}$, thus the common ratio is $\frac{a}{b}$.

Use the geometric series formula to calculate the sum of the first 5 terms of the following geometric sequences.:
$\begin{aligned} \text { 6. } & -1.5,-3,-6,-12,-24,-48 \ldots \\ & -46.5 \text {. }\end{aligned}$
7. $0.3,-0.9,2.7,-8.1,24.3, \ldots$ 18.3.
8. $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16} \ldots$
$\frac{31}{16}$.
9.
$\frac{1}{16}, \frac{1}{2}$,
10. $\frac{a^{2}}{b^{5}}, \frac{a}{b^{4}}, \frac{1}{b^{3}}, \frac{1}{a b^{2}}, \frac{1}{a^{2} b}, \frac{1}{a^{3}}, \frac{b}{a^{4}}, \frac{b^{2}}{a^{5}}, \ldots$.
http://www.shmoop.com/pre-algebra/
Shmoop will make you a better lover (of literature, math, life...)

