Special Points - Answer Key

- 1. Find the critical points of f(x) = 4x+7. None.
- 2. Find the critical point of $g(x) = 4x + \frac{1}{x}$. 7. Find $x = \pm \frac{1}{2}$
- 3. Find inflection point of $u(x) = x^2 \ln(x)$. $x = e^{-3/2}$
- 4. Find inflections point(s) of f(x) where $f''(x) = \ln(x^2 + x 11)$.
- 5. Find critical point(s) of $f(x) = x2^{x^2 16x}.$ $x = \frac{16\ln(2) 1}{2\ln(2)}$

x = 3, -4

6. Find inflection point(s) of g(x) where $g'(x) = \sin(e^{x^2})$.

$$x = 0, \sqrt{\ln\left(\frac{n\pi}{4}\right)}, n \text{ is odd.}$$

7. Find critical point(s) of h(y) where $h'(y) = 7y^2 - 28$.

$$y = \pm 4$$

8. Find the inflection point(s) of f(x) where $\frac{df}{dx} = x(b-x)$.

$$x = \frac{b}{2}$$

9. If θ^* is an inflection point of $w(\theta) = e^{-a\theta}\cos(b\theta)$, where $a \neq b$, find the equation satisfied by θ^* .

$$\tan(b\theta^*) = \frac{a(b+a)}{b(b-a)}$$

10. Find critical point(s) of h(x) where h''(x) = 5 and h'(0) = 10.

$$h'(x) = 5x + h(0)$$
, the critical point is $x = -2$.