Polar Functions Worksheet - Answer Key

1. Translate $x^2 - 2x + y^2 = 6$ into a polar function.

$$r^2 = 2r\cos(\theta) + 6$$

2. Translate $r^2 \cos(2\theta) = a^2$ into a rectangular equation.

$$x^2 - y^2 = a^2$$

- 3. Sketch the function $r = \theta^2$, for $0 \le \theta \le \pi$ in frame **I**.
- 4. Sketch the function $r = \theta + \cos(\theta)$, for $\frac{\pi}{2} \le \theta \le \frac{3\pi}{2}$ in frame **II**.
- 5. Sketch the function $r = \theta \sin(\theta)$, for $0 \le \theta \le \pi$ in frame III.

6. Translate $y = x + 2x^2$ into a polar function.

$$r = 0$$
, $\cos(\theta) = 0$ or $r = \frac{1}{2}(1 - \tan(\theta))$

7. Translate $\theta - r \cos(\theta) = 0$ into a rectangular equation.

$$y = x \tan(x)$$

- 8. Sketch the function $r = \theta \cos(\theta)$, for $0 \le \theta \le \frac{3\pi}{2}$ in frame **IV**.
- 9. Sketch the function $r = \sin(3\theta)$, for $0 \le \theta \le \frac{\pi}{2}$ in frame **V**.
- 10. Sketch the function $r = \cos(4\theta)$, for $\pi \le \theta \le \frac{3\pi}{2}$ in frame **VI**.

©2012 Shmoop University, Inc. All rights reserved. For classroom use only. Want to print this out for your classroom? Go for it. All other reproduction and distribution is prohibited.