Handout 3: Oh, Yeah? Prove It Answers

Figure 2

Use Figure 1 to prove that $\triangle ABE \sim \triangle CBD$ in questions 1-5.

- 1. What allows us to say that $\angle AEB = \angle CDB = \angle ABC = 90^{\circ}$? This is given to us.
- 2. What's the sum of the measures of $\angle ABE$ and $\angle EAB$?

 $\angle ABE + \angle EAB = 90^{\circ}.$

- 4. Find the measure of $\angle CBD$ and $\angle BCD$.
- $\angle ABE + \angle ABC + \angle CBD = 180^{\circ} \Rightarrow \angle CBD = 4^{\circ} \text{ and } \angle BCD = 180^{\circ} 45^{\circ} 90^{\circ} = 45^{\circ}.$ 5. Prove that $\triangle ABE \sim \triangle CBD$.

Since $\angle AEB = \angle CDB = 90^\circ$, $\angle ABE = \angle CBD = 45^\circ$, and $\angle EAB = \angle BCD = 45^\circ$, we can pick any two and use the Angle-Angle Postulate to prove the triangles are similar.

Use Figure 2 to prove that $\Delta DAF \sim \Delta BEC$ in questions 6 – 10.

- 6. What allows us to say that B is the midpoint of \overline{AD} ? Triangle Midsegment Theorem.
- 7. Find the ratio BC : DF.

$$\frac{BC}{DF} = \frac{1}{2}.$$

- 8. Find the ratio BE : AF. $\frac{BE}{AF} = \frac{1}{2}$.
- 9. Find the ratio CE : AD. $\frac{CE}{AD} = \frac{1}{2}.$
- 10. Prove that $\Delta DAF \sim \Delta BEC$.

Since $\frac{BC}{DF} = \frac{BE}{AF} = \frac{CE}{AD} = \frac{1}{2}$, by the Side-Side Postulate, the triangles are similar.

© 2016 Shmoop University, Inc. All rights reserved. For classroom use only. Want to print this out for your classroom? Go for it. All other reproduction and distribution is prohibited.