Handout 3: Circular Logic Answers

Questions 1-2 refer to Figure 1, where points A, B, C, and D are on $\odot O$ and arc AB is congruent to arc CD.

- Prove that ∠COD is congruent to ∠AOB.
 We are given that arc AB is congruent to arc CD, and by definition of arc measure, ∠AOB is congruent to ∠COD.
- 2. Prove that $\triangle AOB$ is congruent to $\triangle COD$. Since \overline{OA} , \overline{OB} , \overline{OC} , and \overline{OD} are all congruent because they're all radii and $\angle AOB$ is congruent to $\angle COD$, we have enough to say that $\triangle AOB$ is congruent to $\triangle COD$ by SAS.

Questions 3-5 refer to figure 2, where segments \overline{AB} , \overline{BC} , \overline{CD} , and \overline{DA} are tangent to $\odot O$ at W, X, Y, and Z, respectively.

- 3. Which theorem proves that \overline{AB} and \overline{DC} are both perpendicular to \overline{WY} , and that \overline{AD} and \overline{BC} are both perpendicular to \overline{XZ} ?
 - The Perpendicular Tangent Theorem.
- 4. Using this information, prove that *ABCD* is a square.

Since the distance between two parallel lines never changes, we can state that AB = BC = XZ = WY = CD = AD. Therefore ABCD is a quadrilateral with four sides of equal length and two sets of parallel sides, which makes it a square.

Questions 6-7 refer to Figure 3, where points A, B, and X are on $\odot C$ and points C, Y, and Z are on $\odot X$. Also, $\angle ACB$ is congruent to $\angle ZXY$.

6.	Prove that \odot C and \odot X are congruent.
	If we draw segment \overline{CX} , we see that it is a radius of both $\odot C$ and $\odot X$. Therefore $\odot C$ and $\odot X$ are
	congruent.

7. Prove that $\triangle ABC$ is congruent to $\triangle XYZ$.

By definition of congruent circles, \overline{XZ} , \overline{XY} , \overline{AC} and \overline{BC} are all congruent. We are given that $\angle ZXY$ is congruent to $\angle ACB$, so we can state that $\triangle ACB$ is congruent to $\triangle XYZ$ by SAS.

For questions 8-10, disprove the statement by finding a counterexample.

- 8. Given any line segment \overline{AB} , you can draw exactly one circle such that \overline{AB} is a chord of that circle. Suppose two circles intersect at points A and B only. (One of many possible answers.)
- 9. Given any line segment \overline{AB} , you can draw exactly one circle such that \overline{AB} is a radius of that circle. Draw $\odot A$ containing B and $\odot B$ containing A.
- 10. If two different lines m and n are both tangent to $\odot O$, then m and n must intersect at some point P. Suppose \overline{PQ} is a diameter of $\odot O$, m contains P, and n contains Q.