Similarity Worksheet 3 - Answers

- 1. Given points A(2,5), B(2,0), C(14,0), D(4,3), E(9,3), and F(9,15). Show that $\triangle ABC \cong \triangle DEF$. AB = DE = 5, BC = EF = 12, AC = DF = 13, by SSS postulate $\triangle ABC \cong \triangle DEF$.
 - Given EFGH is a square with a diagonal drawn from $\angle E$ to $\angle G$. Complete the proof that $\triangle EFG \cong \triangle GHE$ in questions 2 4.
- 2. Is $\overline{EF} \cong \overline{GH}$ and $\overline{FG} \cong \overline{HE}$ true? Why? Yes by definition of a square.
- 3. Is $\overline{EG} \cong \overline{EG}$ true? Why? By reflexivity property.
- 4. Is $\triangle EFG \cong \triangle GHE$? Why? Yes, using SSS postulate.

Use the following information for questions 5 - 7 to prove that $\triangle QRT \cong \triangle SRT$: In $\triangle QRS$, $\angle Q \cong \angle S$ and \overline{RT} bisects \overline{QS} .

- 5. Is $\overline{QR} \cong \overline{RS}$? Why? Yes,by Law of Sines.
- 6. What can you conclude using the definition of segment bisector? $\overline{QT}\cong \overline{TS}$
- 7. Prove that $\triangle QRT \cong \triangle SRT$. Since $\overline{RT} \cong \overline{RT}$, using SSS postulate $\triangle QRT \cong \triangle SRT$.
 - Use the following information for questions 8 10 to prove that $\triangle WXO \cong \triangle YZO$: Given \overline{WY} bisects \overline{XZ} , \overline{WY} and \overline{XZ} intersect at O, and $\overline{XW} \| \overline{YZ}$.
- 8. What can you conclude using the definition of segment bisector? $\overline{XO} \cong \overline{ZO}$
- 9. Why is $\angle XOW \cong \angle ZOY$? By Vertical Angles theorem
- 10. Prove $\triangle WXO \cong \triangle YZO$. By Alternate Interior Angles theorem $\angle X \cong \angle Z$ and ASA postulate proves the congruence.

©2012 Shmoop University, Inc. All rights reserved. For classroom use only. Want to print this out for your classroom? Go for it. All other reproduction and distribution is prohibited.