Functions Worksheet 5 - Answers

- 1. Graph $y = \cos\left(\frac{x}{2}\right)$ in the above grid.
- 2. Graph $y = -2\cos(x)$ in the above grid.
- 3. What is the amplitude of the function $y = \sin(x)$? The amplitude is 1.
- 4. What is the amplitude of the function $y = \cos(x)$? The amplitude is 2π .
- 5. What is the amplitude and period of the function $y = 3\sin(\pi x + 1)$? The amplitude is 3 and the period is 2.
- 6. What is the amplitude and period of the function $y = 14\cos\left(\frac{1}{\pi}\right)$?

 The amplitude is $2\pi^2$ and the period is $\frac{1}{2\pi^2}$.
- 7. How is the graph of $y = \cos(x)$ different from the graph of $y = \cos(\frac{1}{2}x)$?

The graph of $\cos\left(\frac{1}{2}x\right)$ is stretched out horizontally to be twice as long as $\cos(x)$.

- 8. How is the graph of $y = \sin(2x) + 3$ different from the graph of $y = \sin(2x)$? The graph of $\sin(2x) + 3$ is the same as $\sin(2x)$, only shifted up 3 units.
- 9. If the motion for a given spring is described by the equation $y=10.0\cos(2.0t)$, find the spring's frequency and period.

 The period is π seconds, while the frequency is $\frac{1}{\pi}$.
- 10. For the spring in question 9, if the mass at the end of the spring is 50.0 kg, find the spring constant. (For an equation in the form $y = y_{max} \cos(\omega t)$, the spring constant $k = m\omega^2$.) k = 100 N/m.

©2012 Shmoop University, Inc. All rights reserved. For classroom use only. Want to print this out for your classroom? Go for it. All other reproduction and distribution is prohibited.