Euler's Method - Worksheet

1. Estimate
$$y(1.3)$$
 if $y(1) = 9$ and $y'(1) = -0.5$.

$$x = 1.5.$$

- 2. Use tangent line approximation to estimate f(2.8), where $f(x) = x^3 2x^2 4$.
- 7. Estimate the slope of the tangent to g(x) at x = 5.7, if g''(5) = 3.1 and g'(5) = -19.
- 3. Use tangent line approximation to estimate g(3.2), where $g(y) = e^{\sin(2y)}$.
- 8. If f(x) is the solution of $\frac{dy}{dx} = \sqrt{x^3 + 3x}$, f(1) = 6, estimate f(1.5) using Euler's method.
- 4. If $f'(1) = \frac{-1}{2}$ and f(0.8) = 5, estimate f(1).
- 9. If g(x) is the solution of $\frac{dy}{dx} = \frac{y}{x^2+y^2}$, g(0) = -3, estimate g(-0.3) using Euler's method.
- 5. Tangent approximation of $g(\hat{a})$ is \hat{b} using the information g(a) = b. Find g'(a) in terms of a, b, \hat{a} and \hat{b} .
- 10. Estimate y(2.5), where $\frac{dy}{dx} = xy + \frac{y}{x}$, y(2) = 6, using Euler's method with $\Delta x = 0.25$.
- 6. Use the tangent line at x = 2 to estimate the value of $f(x) = 2^{x^2-2x}$ at