Derivatives of Basic Functions Worksheet -Answer Key

1. Find
$$f'(x)$$
 for $f(x) = 2x^3 - (-2x) + \pi$.

$$f'(x) = 6x^2 + 2$$

6. Find
$$\frac{d}{dz}(\sin(\pi)\sin(z) + \ln(5y))$$
.

$$\frac{1}{y}$$

2. Find
$$\frac{dg}{dy}$$
 for $g(y) = 2\sin(y) + \tan(\pi) + 3y^2$.

$$\frac{dg}{dy} = 2\cos(y) + 6y$$

7. Find
$$l'(x)$$
 is $l(x) = \sqrt{x} (x^2 + \frac{1}{x})$.

$$l'(x) = \frac{5}{2}x^{3/2} - \frac{1}{2}x^{-3/2}$$

3. Find
$$\frac{dw}{dz}$$
 for $w(z) = \pi^z - z^{\pi}$.

$$\frac{dw}{dz} = \ln(\pi)\pi^z - \pi z^{\pi - 1}$$

8. Find
$$\frac{d}{du} (4x^{100} - 6x^7 + 9x + \ln(2))$$
.

$$400x^{99} - 47x^6 + 9$$

4. Find
$$h'(u)$$
 for $h(u) = \ln(u^2)$.

$$h(u) = 2\ln(u) \implies h'(u) = \frac{2}{u}$$

9. Find
$$[x^2 + e^x + |x|]'$$
.

The function if not differentiable.

5. Find
$$\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$$
 for $f(x) = 10$. Find $u'(x)$ if $u(x) = \frac{x^3 - x\cos(x)}{x}$.

$$\frac{-4}{x^3} - 8x$$

10. Find
$$u'(x)$$
 if $u(x) = \frac{x^3 - x \cos(x)}{x}$.

$$u(x) = x^2 - \cos(x) \implies u'(x) = 2x + \sin(x)$$

©2012 Shmoop University, Inc. All rights reserved. For classroom use only. Want to print this out for your classroom? Go for it. All other reproduction and distribution is prohibited.

> http://www.shmoop.com/calculus/ Shmoop will make you a better lover (of literature, math, life...)