Derivative Approximation Worksheet

- 1. Use the slope of the secant line between x = -2 and x = -1 to approximate f'(-1.5), where $f(x) = x^3 + 3x$.
- 2. Lisa was 5 miles away from Shmoop at 9am and 3 miles away at 8:15am. Find her average rate of travel.
- 3. Find the derivative of $f(x) = 2x^2$ using the limit definition.
- 4. Use the following table to approximate f'(0):

x	-0.5	-0.3	-0.1	0.08	0.1
f(x)	34.6	27	28.1	26	24.3

- 5. Find the derivative of $f(x) = \frac{1}{x}$ at x = -1 using limit definition.
- 6. If x is measured in minutes and y is measured in slices of pizza then find

the units of $\frac{dy}{dx}\Big|_{y=5}$.

7. Fill the following table to approximate f'(1) for $f(x) = e^{-x}$:

h	-0.1	-0.01	0	0.05	0.1
f(1+h)					

- 8. Use the slope of the secant line to approximate the derivative of $g(x) = 2^x 1$ at x = 1.
- 9. Stan's distance(in miles) from home is given by $d(t) = 2t^2 + t$, where t = 0 denotes the time he starts his running. Find his instantaneous speed after 15 minutes.
- 10. If x is measured in hours and y is measured in area of wall painted (m²)then interpret $\frac{dy}{dx}\Big|_{y=2} = 8.3$.

©2012 Shmoop University, Inc. All rights reserved. For classroom use only. Want to print this out for your classroom? Go for it. All other reproduction and distribution is prohibited.

http://www.shmoop.com/calculus/ Shmoop will make you a better lover (of literature, math, life...)