Convergence of Series II - Answer Key

1. Is $\sum_{n=1}^{\infty} \frac{1}{2n-1}$ convergent? Why?

No, by the comparision test.

2. Is $\sum_{n=0}^{\infty} \frac{3^n}{n!}$ convergent? Why?

Yes, by the ratio test.

3. Is $\sum_{n=1}^{\infty} \frac{a^n n^2}{n!}$ convergent for $a \neq 1$? Why?

By the ratio test the series converges for a < -1 and diverges for a > -1.

4. Is $\sum_{n=1}^{\infty} \frac{1}{n^{3/2} + n^2}$ convergent? Why?

Yes, by the comparision test, $\frac{1}{n^{3/2}+n^2} < \frac{1}{n^2}$.

5. Is $\sum_{n=1}^{\infty} \frac{(10)^n}{2^{n+1}n^2}$ convergent? Why?

No, by the ratio test.

- 6. Is $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ convergent? Why? Yes, by AST.
- 7. Is $\sum_{n=1}^{\infty} \frac{2^n \sqrt{n}}{n!}$ convergent? Why? Yes, by the ratio test.
- 8. Is $\sum_{n=0}^{\infty} \frac{(n+1)!}{(100)^n \sqrt{n!}}$ convergent? Why? No, by the ratio test.
- 9. Is $\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2}$ convergent? Why? No, by the ratio test
- 10. Is $\sum_{n=0}^{\infty} \sin^{-1}(e^{-n})$ convergent? Why? Yes, by the ratio test.

©2012 Shmoop University, Inc. All rights reserved. For classroom use only. Want to print this out for your classroom? Go for it. All other reproduction and distribution is prohibited.