Continuity of Functions Worksheet

- 1. For f(x) = 3x 4, when |x 2| < 0.1 implies |f(x) 2| < 0.5, identify c, ϵ and δ used in the definition of continuity.
- 6. For $f(x) = e^x$, find the largest δ such that $|x| < \delta$ implies |f(x) f(0)| < 0.01.
- 2. Give an example of a function which is continuous on [0,1) but discontinuous on (0,1].
- 7. Prove that $f(x) = \begin{cases} 0 & \text{if } x < -1; \\ 1 & \text{if } x \ge -1. \end{cases}$ is discontinuous at x = -1.
- 3. Give an example of a function which is continuous on [0,1] but discontinuous on (0,1].
- 8. For f(x) = 5x 2, find the largest δ such that $|x 1| < \delta$ implies |f(x) f(1)| < 0.5.
- 4. Prove that $f(x) = x^2$ is continuous at x = 0.
- 9. For $f(x) = x^2 + 1$, find the largest δ such that $|x 1| < \delta$ implies |f(x) f(1)| < 0.1.
- 5. Prove that $f(x) = \frac{1}{x}$ is continuous at x = 1.
- 10. Find the points of discontinuities for $f(x) = \begin{cases} -1 & \text{if } x \text{ is rational;} \\ 1 & \text{if } x \text{ is irrational.} \end{cases}$

©2012 Shmoop University, Inc. All rights reserved. For classroom use only. Want to print this out for your classroom? Go for it. All other reproduction and distribution is prohibited.

http://www.shmoop.com/calculus/ Shmoop will make you a better lover (of literature, math, life...)